La magnetosfera terrestre actúa como un colador

La magnetosfera terrestre actúa como un colador
El cuarteto de satélites de la ESA dedicado al estudio de la magnetosfera terrestre, Clúster, ha descubierto que nuestra burbuja protectora deja pasar el viento solar en un mayor rango de condiciones de lo que se pensaba.

El campo magnético terrestre es la primera línea de defensa de nuestro planeta ante el bombardeo del viento solar, una corriente de plasma expulsada por el Sol que viaja a través del Sistema Solar arrastrando su propio campo magnético.
En función de cómo esté alineado el campo magnético interplanetario (IMF) del viento solar con el campo magnético terrestre, se producen distintos fenómenos en las inmediaciones de nuestro planeta.

Uno de los procesos mejor conocidos es la reconexión magnética, que se produce cuando líneas de campo que apuntan en direcciones opuestas se abren de forma espontánea y se reconectan con otras líneas cercanas. Esto expulsa su carga de plasma hacia la magnetosfera, dejando la puerta abierta para que el viento solar alcance la Tierra.

Bajo ciertas circunstancias esto puede influir en la ‘meteorología espacial’, generando espectaculares auroras, interrumpiendo las señales de GPS o afectando a los sistemas eléctricos en tierra.

En el año 2006 Clúster realizó un sorprendente descubrimiento: unos enormes remolinos de plasma que se extendían a lo largo de más de 40.000 kilómetros en el límite de la magnetosfera – la magnetopausa. Estos remolinos dejaban pasar el viento solar incluso cuando el campo magnético terrestre y el IMF estaban alineados.

Estos remolinos se encontraban a latitudes ecuatoriales, donde la alineación entre los dos campos magnéticos es mayor.

Estos vórtices están regulados por el proceso conocido como efecto Kelvin-Helmholtz (KH), que se produce en la naturaleza cuando hay un gradiente de velocidad en la interfaz entre dos flujos adyacentes.

Este fenómeno es el responsable de la formación de olas bajo la acción del viento que sopla sobre la superficie del mar, o de las nubes en la atmósfera.

El análisis de los datos recogidos por Clúster revela que las inestabilidades KH se pueden producir en otras regiones de la magnetopausa, y en distintas configuraciones del IMF, constituyendo un mecanismo que permite el transporte continuo de viento solar hacia el interior de la magnetosfera terrestre.

“Descubrimos que cuando el campo magnético interplanetario llega en dirección este u oeste, la mayor parte de la capa límite de la magnetosfera a altas latitudes experimenta inestabilidades KH. Estas regiones están bastante alejadas de donde se había observado este fenómeno antes”, explica Kyoung-Joo Hwang, del Centro Goddard de la NASA y autor principal del artículo que presenta estos resultados en el Journal of Geophysical Research.

“De hecho, resulta difícil imaginar una situación en la que el plasma del viento solar no pueda filtrarse en la magnetosfera, ya que no es una burbuja magnética perfecta”.

Estos resultados confirman las predicciones teóricas y están de acuerdo con las simulaciones realizadas por los autores de este estudio.

“El viento solar puede entrar en la magnetosfera en un rango de ubicaciones y condiciones que no conocíamos hasta ahora”, añade Melvyn Goldstein, también del Centro Goddard de la NASA y coautor de esta publicación.

“Todo esto sugiere que la magnetopausa actúa como una especie de ‘colador’ que permite que el viento solar se filtre de forma continua hacia la magnetosfera”.

Las inestabilidades KH también se han detectado en las magnetosferas de Mercurio y de Saturno. Según este estudio, en estos planetas también podrían constituir un mecanismo de transporte continuo de viento solar hacia sus respectivas magnetosferas.

“Las observaciones de Clúster nos ayudan a comprender mejor el comportamiento del viento solar y su interacción con la magnetosfera, que es la clave para el estudio de la meteorología espacial”, explica Matt Taylor, científico del proyecto Clúster para la ESA.

“En este caso, la (relativamente) poca separación entre los cuatro satélites de Clúster mientras cruzaban la magnetopausa diurna a altas latitudes nos ha permitido echar una mirada microscópica al proceso que rasga la magnetopausa, dejando pasar a las partículas procedentes del Sol”.

European Space Agency, ESA

Vientos estelares emiten rayos X tras colisionar a gran velocidad

Vientos estelares emiten rayos X tras colisionar a gran velocidad
El trabajo conjunto de los telescopios espaciales XMM-Newton de la ESA y Swift de la NASA ha permitido detectar por primera vez los rayos X emitidos por la colisión del viento de dos estrellas masivas que se orbitan mutuamente.

El viento estelar, una corriente de partículas arrancadas de la superficie de una estrella masiva por su intensa luz, puede alterar en gran medida su entorno.
En algunos lugares, es capaz de desencadenar el colapso de nubes de polvo y gas, comenzando el proceso de formación de una nueva estrella.

En otros, puede disipar la nube antes de que ésta tenga la oportunidad de empezar a colapsar.

Los telescopios espaciales XMM-Newton y Swift han descubierto la ‘Piedra Rosetta’ de estos vientos en un sistema binario conocido como Cyg OB2 #9, en la región de formación de estrellas de Cygnus (El Cisne). Allí, el viento emitido por dos estrellas masivas que se orbitan mutuamente colisiona a gran velocidad.

Cyg OB2 #9 fue todo un enigma durante muchos años. Su peculiar emisión de ondas electromagnéticas sólo se podría explicar si se tratase de un sistema formado por dos estrellas, hipótesis que finalmente se confirmó en el año 2008.

Por aquel entonces, sin embargo, no se encontraron pruebas directas de que el viento de las dos estrellas colisionase, aunque se esperaba poder detectar este fenómeno en su huella de rayos X.

Para obtener esta huella se tenía que estudiar a las estrellas a medida que se aproximaban al punto de máximo acercamiento en su órbita de 2.4 años, una oportunidad que se presentó por primera vez entre los meses de junio y julio de 2011.

Los telescopios espaciales descubrieron que los vientos estelares chocaban a velocidades de varios millones de kilómetros por hora, generando un plasma a millones de grados centígrados que emitía una fuerte radiación en la banda de los rayos X.

Durante este periodo se detectó cuatro veces más energía que la que emite el sistema cuando las estrellas se encuentran en su posición más alejada.

“Es la primera vez que encontramos pruebas claras de la colisión de vientos estelares en este sistema”, explica Yael Nazé, de la Universidad de Lieja, Bélgica, autora principal del artículo que presenta estos resultados en la publicación Astronomy & Astrophysics.

“Solo conocemos otros pocos ejemplos de colisiones de vientos estelares en sistemas binarios, pero este caso se podría considerar el arquetipo de este fenómeno”.

Al contrario que en los otros sistemas, en los que también se detectan colisiones de vientos estelares, el comportamiento de Cyg OB2 #9 permanece uniforme a lo largo de toda la órbita de las estrellas, exceptuando el incremento en la intensidad de la radiación cuando las estrellas se acercan.

“En los otros casos la colisión es turbulenta; el viento de una estrella puede llegar a chocar con la otra cuando se aproximan demasiado, causando una caída brusca en el nivel de rayos X detectados”, explica Nazé.

“Sin embargo, esto no sucede en Cyg CB2 #9, lo que nos lleva a considerarlo el primer ejemplo ‘simple’ que conocemos. Esto le convierte en la clave para desarrollar nuevos modelos que nos ayuden a comprender mejor las características de estos poderosos vientos estelares”.

“Este sistema binario en particular supone un gran paso para el estudio de las colisiones de vientos estelares y de sus emisiones asociadas. Su descubrimiento fue posible gracias a la observación de un sistema binario de estrellas con telescopios de rayos X”, añade Norbert Schartel, científico del proyecto XMM-Newton para la ESA.

European Space Agency, ESA

Nobel de Física 2012 para el control de las partículas en el mundo cuántico

Nobel de Física 2012 para el control de las partículas en el mundo cuántico
La Real Academia Sueca de las Ciencias ha anunciado que el Premio Nobel de Física de este año lo comparten el investigador francés Serge Haroche y el estadounidense David J. Wineland "por sus métodos experimentales innovadores que permiten la medición y manipulación de sistemas cuánticos individuales”.

Los científicos Serge Haroche, profesor del Collège de France and Ecole Normale Supérieure en Paris (Francia), y David J. Wineland, investigador del National Institute of Standards and Technology (NIST) y la Universidad de Colorado Boulder (EEUU), son los ganadores del Premio Nobel de Física 2012.

Así lo ha anunciado hoy la Real Academia Sueca de las Ciencias, quien reconoce los trabajos que han desarrollado los dos galardonados en el campo de la física cuántica. En concreto, han inventado y desarrollado métodos para medir y manipular partículas individuales sin alterar su naturaleza cuántica.

Las reglas de la física clásica dejan de funcionar en la escala de las partículas individuales de luz o materia. Es entonces cuando entra en juego la física cuántica, pero las partículas individuales no son fáciles de aislar de su entorno y enseguida pierden sus misteriosas propiedades cuánticas según interaccionan con el exterior.

Hasta ahora estos fenómenos no se podían observar directamente, y solo se formulaban planteamientos teóricos. Pero los trabajos de los dos galardonados han demostrado con ingeniosas técnicas de laboratorio que se pueden cuantificar y controlar los frágiles estados cuánticos.

Wineland atrapa iones –átomos cargados eléctricamente–, controlándolos y midiéndolos con partículas de luz, con fotones. Sin embargo, Haroche utiliza el enfoque opuesto: manipula y mide fotones mediante el envío de átomos a través de una trampa.

El investigador francés, que nació el 11 de septiembre de 1944 en Casablanca (actual Marruecos), es principalmente conocido por demostrar la ‘decoherencia cuántica’ (explica la mecánica que ocurre a escala ‘micro’ en física cuántica). Haroche obtuvo su licenciatura en la Universidad Pierre y Marie Curie de París en 1971.

Por su parte, el estadounidense Wineland, que nació en Milwaukee en 1944 y se licenció en la Universidad de Harvard en 1970, ha desarrollado avances relevantes en óptica. Sus líneas de investigación se han centrado en el enfriamiento láser de partículas iónicas y en el uso de iones atrapados para implementar operaciones de computación cuántica.

Entre sus múltiples premios destaca la medalla Benjamín Franklin en Física que recibió en 2010 de manos del Instituto Franklin, junto al español Juan Ignacio Cirac y Peter Zoller.

Ambos laureados trabajan en el campo de la óptica cuántica estudiando la interacción entre la luz y la materia, un ámbito que ha progresado de forma considerable desde mediados de los 80. Los métodos innovadores que han introducio han permitido avanzar hacia la construcción de un nuevo tipo de computadora cuántica súper rápida que puede revolucionar la informática del futuro.

Además, sus investigaciones también han ayudado a la construcción de relojes extremadamente precisos, que podrían convertirse en la base de un nuevo estándar de tiempo, con una precisión cien veces superior a los actuales relojes de cesio.

Haroche y Wineland compartirán, a partes iguales, los 8 millones de coronas suecas con los que la Real Academia Sueca de las Ciencias dota al Nobel de Física.

SINC

Página siguiente »