Una curiosa estrella muerta presenta uno de los campos magnéticos más intensos del universo

Una curiosa estrella muerta presenta uno de los campos magnéticos más intensos del universo
Gracias al telescopio espacial XMM-Newton, de la ESA, un equipo de científicos ha descubierto que una curiosa estrella muerta presenta uno de los campos magnéticos más intensos del universo, a pesar de que todos los indicios parecían indicar que su magnetismo era inusualmente débil.

Este objeto, conocido como SGC 0418+5729 (o SGR 0418, de forma abreviada), es un magnetar, un tipo de estrella de neutrones.

Una estrella de neutrones es el núcleo muerto de una estrella masiva que terminó colapsando sobre sí misma tras agotar todo su combustible y explotar como supernova. Son objetos extraordinariamente densos, acumulando una masa mayor que la de nuestro Sol en una esfera de apenas 20 kilómetros de diámetro– el tamaño de una ciudad.

Un pequeño porcentaje de las estrellas de neutrones se transforman en magnetares, objetos con un intenso campo magnético. Como referencia, pueden presentar un magnetismo miles de millones o billones de veces más intenso que el generado por las máquinas de resonancia magnética de los hospitales. Estos campos magnéticos provocan que los magnetares emitan de forma esporádica potentes explosiones de radiación de alta energía.

SGR 0418 se encuentra en nuestra galaxia, a unos 6.500 años luz de la Tierra. Fue detectado por primera vez en junio de 2009 por los telescopios espaciales Fermi (NASA) y Koronas-Photon (Roscosmos), cuando se iluminó de repente en las bandas de los rayos X y de los rayos gamma. Desde ese momento se ha estado estudiando con toda una flota de observatorios, entre los que se encuentra el telescopio espacial XMM-Newton de la ESA.

"Hasta hace poco, todo parecía indicar que este magnetar tenía uno de los campos magnéticos más débiles jamás registrados, de apenas 6 x 1012 Gauss, unas 100 veces menos intenso que el de un magnetar típico”, explica Andrea Tiengo, del Instituto Universitario de Estudios Superiores de Pavía, Italia, autor principal del artículo que presenta estos resultados en Nature.

“Comprender estos resultados fue todo un reto. Sospechábamos que SGR 0418 ocultaba un campo magnético mucho más intenso, fuera del alcance de las técnicas de análisis habituales”.

Los magnetares giran más lento que las estrellas de neutrones convencionales, pero también son capaces de completar una revolución cada pocos segundos. La forma habitual de medir el campo magnético de un magnetar es determinar a qué velocidad se está frenando esta rotación. Basándose en los datos recogidos a lo largo de tres años, los astrónomos llegaron a la conclusión de que el campo magnético de SGR 0418 era extremadamente débil.

El equipo de Andrea Tiengo desarrolló una nueva técnica capaz de analizar este campo magnético con un nivel de detalle sin precedentes, basada en el estudio de las variaciones en el espectro de rayos X del magnetar sobre una escala temporal extremadamente corta. Esta técnica ha desvelado que SGR 0418 es en realidad un monstruo magnético.

“Nuestras observaciones sugieren que este magnetar tiene un campo magnético muy fuerte y retorcido, que alcanza los 1015 Gauss en ciertas regiones de su superficie, de apenas unos pocos cientos de metros de diámetro”, aclara Andrea.

“El campo magnético global puede parecer débil, como sugerían las primeras observaciones, pero ahora somos capaces de estudiar la sub-estructura del campo magnético en la superficie del magnetar y hemos descubierto que es extremadamente intenso”.

Este fenómeno es similar al que podemos observar en nuestro Sol, que presenta campos magnéticos localizados anclados en las manchas solares. Cuando la configuración de estos campos varía, pueden colapsar produciendo una erupción solar, o en el caso de SGR 0418, una explosión de rayos X.

“Los datos espectrales recogidos por XMM-Newton, combinados con una nueva técnica de análisis, nos han permitido realizar el primer estudio detallado del campo magnético de un magnetar, confirmando que es uno de los más intensos del universo conocido”, añade Norbert Schartel, Científico del Proyecto XMM-Newton para la ESA.

“Ahora disponemos de una nueva herramienta que nos permitirá estudiar el campo magnético de otros magnetares y perfeccionar nuestros modelos de estos exóticos objetos”.

ESA

Una curiosa estrella muerta presenta uno de los campos magnéticos más intensos del universo

Una curiosa estrella muerta presenta uno de los campos magnéticos más intensos del universo
Gracias al telescopio espacial XMM-Newton, de la ESA, un equipo de científicos ha descubierto que una curiosa estrella muerta presenta uno de los campos magnéticos más intensos del universo, a pesar de que todos los indicios parecían indicar que su magnetismo era inusualmente débil.

Este objeto, conocido como SGC 0418+5729 (o SGR 0418, de forma abreviada), es un magnetar, un tipo de estrella de neutrones.

Una estrella de neutrones es el núcleo muerto de una estrella masiva que terminó colapsando sobre sí misma tras agotar todo su combustible y explotar como supernova. Son objetos extraordinariamente densos, acumulando una masa mayor que la de nuestro Sol en una esfera de apenas 20 kilómetros de diámetro– el tamaño de una ciudad.

Un pequeño porcentaje de las estrellas de neutrones se transforman en magnetares, objetos con un intenso campo magnético. Como referencia, pueden presentar un magnetismo miles de millones o billones de veces más intenso que el generado por las máquinas de resonancia magnética de los hospitales. Estos campos magnéticos provocan que los magnetares emitan de forma esporádica potentes explosiones de radiación de alta energía.

SGR 0418 se encuentra en nuestra galaxia, a unos 6.500 años luz de la Tierra. Fue detectado por primera vez en junio de 2009 por los telescopios espaciales Fermi (NASA) y Koronas-Photon (Roscosmos), cuando se iluminó de repente en las bandas de los rayos X y de los rayos gamma. Desde ese momento se ha estado estudiando con toda una flota de observatorios, entre los que se encuentra el telescopio espacial XMM-Newton de la ESA.

"Hasta hace poco, todo parecía indicar que este magnetar tenía uno de los campos magnéticos más débiles jamás registrados, de apenas 6 x 1012 Gauss, unas 100 veces menos intenso que el de un magnetar típico”, explica Andrea Tiengo, del Instituto Universitario de Estudios Superiores de Pavía, Italia, autor principal del artículo que presenta estos resultados en Nature.

“Comprender estos resultados fue todo un reto. Sospechábamos que SGR 0418 ocultaba un campo magnético mucho más intenso, fuera del alcance de las técnicas de análisis habituales”.

Los magnetares giran más lento que las estrellas de neutrones convencionales, pero también son capaces de completar una revolución cada pocos segundos. La forma habitual de medir el campo magnético de un magnetar es determinar a qué velocidad se está frenando esta rotación. Basándose en los datos recogidos a lo largo de tres años, los astrónomos llegaron a la conclusión de que el campo magnético de SGR 0418 era extremadamente débil.

El equipo de Andrea Tiengo desarrolló una nueva técnica capaz de analizar este campo magnético con un nivel de detalle sin precedentes, basada en el estudio de las variaciones en el espectro de rayos X del magnetar sobre una escala temporal extremadamente corta. Esta técnica ha desvelado que SGR 0418 es en realidad un monstruo magnético.

“Nuestras observaciones sugieren que este magnetar tiene un campo magnético muy fuerte y retorcido, que alcanza los 1015 Gauss en ciertas regiones de su superficie, de apenas unos pocos cientos de metros de diámetro”, aclara Andrea.

“El campo magnético global puede parecer débil, como sugerían las primeras observaciones, pero ahora somos capaces de estudiar la sub-estructura del campo magnético en la superficie del magnetar y hemos descubierto que es extremadamente intenso”.

Este fenómeno es similar al que podemos observar en nuestro Sol, que presenta campos magnéticos localizados anclados en las manchas solares. Cuando la configuración de estos campos varía, pueden colapsar produciendo una erupción solar, o en el caso de SGR 0418, una explosión de rayos X.

“Los datos espectrales recogidos por XMM-Newton, combinados con una nueva técnica de análisis, nos han permitido realizar el primer estudio detallado del campo magnético de un magnetar, confirmando que es uno de los más intensos del universo conocido”, añade Norbert Schartel, Científico del Proyecto XMM-Newton para la ESA.

“Ahora disponemos de una nueva herramienta que nos permitirá estudiar el campo magnético de otros magnetares y perfeccionar nuestros modelos de estos exóticos objetos”.

ESA

Al grafeno le salen mariposas por un extraño efecto cuántico

Al grafeno le salen mariposas por un extraño efecto cuántico 
Dos equipos internacionales de científicos, con participación del CSIC en uno de ellos, han demostrado que el grafeno sometido a campos electromagnéticos exhibe una sucesión de mariposas de Hofstadter, una llamativa estructura fractal. Los estudios se publican esta semana en la revista Nature.

En 1976, el científico y filósofo Douglas Hofstadter predijo un raro efecto cuántico, conocido como mariposa de Hofstadter. El fenómeno consiste en que los electrones de una malla de material sometido a campos electromagnéticos muestran un complejo espectro de energía con características fractales.

Hasta la fecha los científicos no habían podido demostrarlo experimentalmente, pero ahora dos equipos internacionales, uno liderado desde la Universidad de Columbia (EEUU) y otro desde la de Mánchester (Reino Unido), lo han conseguido utilizando grafeno, un cristal formado por una red de hexágonos de carbono.

“Los electrones en los cristales se comportan como ondas, y la trayectoria de estas ondas se modifica por el campo magnético”, explica a SINC Francisco Guinea, físico del Instituto de Ciencia de Materiales de Madrid (CSIC) y miembro del segundo equipo.

“La combinación de la red cristalina y el campo magnético genera patrones que se reproducen a escalas cada vez más pequeñas, formando estos sistemas fractales”, añade el investigador.

Para observar las repeticiones de las mariposas de Hofstadter, los equipos colocaron la malla de grafeno sobre un sustrato de nitruro de boro, también hexagonal. De esta forma surge un artefacto visual conocido como patrones de moaré, similar al que a veces aparece en una imagen al superponer rejillas de líneas con un cierto ángulo.

Los dos grupos han trabajado de forma independiente, el primero con bicapas de grafeno y el segundo con una sola capa, pero en ambos casos han obtenido evidencias claras de los espectros de energía de Hofstadter. Los estudios se publican en la revista Nature.

Los autores destacan que los resultados ofrecen “una oportunidad para estudiar efectos caóticos complejos en sistemas cuánticos”. De hecho la investigación se basa en el efecto Hall cuántico, una versión cuántica del denominado campo Hall. Este aparece en el interior de un conductor cuando actúa un campo magnético perpendicular al movimiento de las cargas.

Además, la investigación también abre la posibilidad de diseñar en el futuro nuevos dispositivos electrónicos y optoelectrónicos que pudieran aprovechar este efecto.

“Aún es pronto para decir cómo se podría aplicar, aunque, en general, la modulación de las trayectorias de los electrones puede servir para bloquear corrientes y desarrollar transistores”, apunta Guinea.

SINC

Página siguiente »